
NP and NP-

Completeness

Introduction to Decision and

Optimization Problems

 Decision Problem: computational
problem with intended output of
“yes” or “no”, 1 or 0

 Optimization Problem: computational
problem where we try to maximize
or minimize some value

 Introduce parameter k and ask if the
optimal value for the problem is a
most or at least k. Turn optimization
into decision

Complexity Class P

 Deterministic in nature

 Solved by conventional computers in
polynomial time
• O(1) Constant

• O(log n) Sub-linear

• O(n) Linear

• O(n log n) Nearly Linear

• O(n2) Quadratic

 Polynomial upper and lower bounds

Complexity Class NP

 Non-deterministic part as well

 choose(b): choose a bit in a non-
deterministic way and assign to b

 If someone tells us the solution to a
problem, we can verify it in polynomial
time

 Two Properties: non-deterministic method
to generate possible solutions,
deterministic method to verify in
polynomial time that the solution is
correct.

Relation of P and NP

 P is a subset of NP

 “P = NP”?

 Language L is in NP, complement of
L is in co-NP

 co-NP ≠ NP

 P ≠ co-NP

Polynomial-Time Reducibility

 Language L is polynomial-time
reducible to language M if there is a
function computable in polynomial
time that takes an input x of L and
transforms it to an input f(x) of M,
such that x is a member of L if and
only if f(x) is a member of M.

 Shorthand, LpolyM means L is
polynomial-time reducible to M

NP-Hard and NP-Complete

 Language M is NP-hard if every other
language L in NP is polynomial-time
reducible to M

 For every L that is a member of NP,
LpolyM

 If language M is NP-hard and also in
the class of NP itself, then M is NP-
complete

NP-Hard and NP-Complete

 Restriction: A known NP-complete
problem M is actually just a special case of
L

 Local replacement: reduce a known NP-
complete problem M to L by dividing
instances of M and L into “basic units”
then showing each unit of M can be
converted to a unit of L

 Component design: reduce a known NP-
complete problem M to L by building
components for an instance of L that
enforce important structural functions for
instances of M.

TSP

 For each two cities, an integer cost is given to
travel from one of the two cities to the other. The
salesperson wants to make a minimum cost
circuit visiting each city exactly once.

3

1

1

1

2

2

3

4

1
2 2

1

2

2

4

4 1

5

1

i = 23

2

Circuit-SAT

Logic Gates

NOT

AND

OR 1

1

1 0 0

0

1 1

1

1

1

0

0

 Take a Boolean circuit with a single output
node and ask whether there is an
assignment of values to the circuit’s inputs
so that the output is “1”

Knapsack

 Given s and w can we translate a
subset of rectangles to have their
bottom edges on L so that the total
area of the rectangles touching L is
at least w?

s

L

1

2

3
4

5 6

7

PTAS

 Polynomial-Time Approximation
Schemes

 Much faster, but not guaranteed to
find the best solution

 Come as close to the optimum value
as possible in a reasonable amount
of time

 Take advantage of rescalability
property of some hard problems

Application

 Bin packing problem

 knapsack problem

 Mininum spanning tee

 Longest path problem

Assignment

Q.1)Differentiate between NP-hard &
NP-Complete.

Q.2) What is polynomial time
reducibility?

Q.3)What is relation between P and
NP.

